Understanding the Android Software Stack

So far we've covered Android's history and its optimization features including the Dalvik VM, and we've hinted at the Java programming stack available. In this section, we would like to cover the development aspect of Android. Figure 1-6 is a good place to start this discussion.


Java SDK



Resources I Content Providers SQLite

Android Runtime

Dalvik VM

Linux Kernel










Figure 1-6. Detailed Android SDK software stack

At the core of the Android Platform is Linux kernel version 2.6, responsible for device drivers, resource access, power management, and other OS duties. The supplied device drivers include Display, Camera, Keypad, WiFi, Flash Memory, Audio, and IPC (interprocess communication). Although the core is Linux, the majority—if not all—of the applications on an Android device such as the T-Mobile G1 are developed in Java and run through the Dalvik VM.

Sitting at the next level, on top of the kernel, are a number of C/C++ libraries such as OpenGL, WebKit, FreeType, Secure Sockets Layer (SSL), the C runtime library (libc), SQLite, and Media. The system C library based on Berkeley Software Distribution (BSD) is tuned (to roughly half its original size) for embedded Linux-based devices. The media libraries are based on PacketVideo's (http://www.packetvideo.com/) OpenCORE. These libraries are responsible for recording and playback of audio and video formats. A library called Surface Manager controls access to the display system and supports 2D and 3D.

The WebKit library is responsible for browser support; it is the same library that supports Google Chrome and Apple Inc.'s Safari. The FreeType library is responsible for font support. SQLite (http://www.sqlite.org/) is a relational database that is available on the device itself. SQLite is also an independent open source effort for relational databases and not directly tied to Android. You can acquire and use tools meant for SQLite for Android databases as well.

Most of the application framework accesses these core libraries through the Dalvik VM, the gateway to the Android Platform. As we indicated in the previous sections, Dalvik is optimized to run multiple instances of VMs. As Java applications access these core libraries, each application gets its own VM instance. The Dalvik VM is backward-compatible with Java SE Development Kit (JDK) 5.0 but optimized for the Android Platform. However, some features of the Java experience might differ because the version of Java SE on Android is a subset of the full platform.

The Android Java API's main libraries include telephony, resources, locations, UI, content providers (data), and package managers (installation, security, and so on). Programmers develop end-user applications on top of this Java API. Some examples of end-user applications on the device include Home, Contacts, Phone, Browser, and so on.

Android also supports a custom Google 2D graphics library called Skia, which is written in C and C++. Skia also forms the core of the Google Chrome browser. The 3D APIs in Android, however, are based on an implementation of OpenGL ES from the Khronos group (http:// www.khronos.org). OpenGL ES contains subsets of OpenGL that are targeted toward embedded systems.

From a media perspective, the Android Platform supports the most common formats for audio, video, and images. From a wireless perspective, Android has APIs to support Bluetooth, EDGE, 3G, WiFi, and Global System for Mobile Communication (GSM) telephony, depending on the hardware.

Was this article helpful?

0 0

Post a comment